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Natalia Fabraw

Within an infinitely repeated game, I compare the level and conduct of
collusion under uniform and discriminatory auctions. For this purpose,
I characterize the optimal collusive schemes and sets of sustainable
profits under these auction formats. I show that uniform auctions
facilitate collusion more than discriminatory auctions: the optimal
penal code is equally severe under the two formats; but bidders’
deviation incentives are weaker in uniform auctions given that the pay-
off irrelevant bids can be used to relax the enforcement problem. This
discussion is particularly relevant after the recent reforms in the
electricity industry in England & Wales, and elsewhere.

I. INTRODUCTION

COLLUSION APPEARS TO BE a pervasive problem in many auctions. There has
been evidence of collusion in auctions for public work contracts (McMillan
[1991]), highway construction (Porter and Zona [1993]), natural resources
(Baldwin,Marshall andRichard [1997]), and the distribution of school milk
(Pesendorfer [2000]). Both theory and practice suggest that collusion is a
particularly critical issue when auctions are repeated frequently. In a
dynamic setting, bidders may learn to coordinate their strategies, and hence
compete less aggressively with each other in order to raise profits over the
level that would be attained in a static setting. However, the sustainability of
collusion is faced with an enforcement problem. Bidders may find it in their
private interest to deviate from the recommended strategy, i.e., to cheat. As
is well known, for collusion to be sustainable, the threat of future
punishments should be strong enough so as to discourage bidders from
cheating.
The aim of this paper is to assess how different auction formats affect the

possibilities for enforcing collusion in a dynamic setting. With few
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exceptions,1 the previous literature on collusion in auctions has restricted
attention to the analysis of one-shot auctions (vonUngern-Sternberg [1988],
McAfee and McMillan [1992] and Pesendorfer [2000]). These models
abstract from the enforcement problem by assuming that bidders are
sufficiently patient so that the adherence to the collusive scheme is always
guaranteed. This assumption is not suitable for comparing the sustainability
of collusion across auction formats since it would hide their differences in
terms of the costs and gains from cheating. By explicitly modelling the
repetition of auctions, our paper is able to highlight these differences, which
will be shown to be crucial for the sustainability of collusion.
We restrict attention to the analysis of collusion under two commonly

used auction formats: the uniform-price and the discriminatory auction.
Under both auction formats, bidders submit supply schedules2 which
specify theprices they arewilling to receive for every unit of the good, and the
units are allocated to the bidders who submitted the lowest bids. The two
auction formats differ in the price that each bidder receives for the units it is
awarded: in the uniform-price auction, all bidders receive the same price,
equal to the highest accepted bid, whereas in the discriminatory auction each
bidder receives his individual price offers.
One motivation for focusing on the analysis of uniform-price and

discriminatory auctions is the ongoing debate in electricity markets about
the desirability of adopting either one of these two auction formats.3

Electricity markets differ in several aspects, but to date all have been
organized as uniform-price auctions. The new reforms recently introduced
in England and Wales have departed from this common feature, by
switching from a uniform-price to a discriminatory auction. The UK
regulatory authorities claim that uniform-price auctions are more subject to
strategic manipulation than discriminatory auctions, and therefore expect
that the switch in the auction format will offer lower prices from more
competitive trading. (See Ofgem [2002] for a comparison of the pattern of
prices before and after the reform).
This claim is supported by several papers that have compared uniform-

price and discriminatory auctions in a static setting (see Back and Zender
[1993], Klemperer [2002], Fabra, von der Fehr and Harbord [2002];
Goswami, Thomas and Rebello [1996] provide experimental evidence).

1 See Athey and Bagwell [2001], Aoyagi [2000] and Skrzypacz and Hopenhayn [1999].
2Our model is specified in terms of selling but, with the appropiate change in signs, it can be

translated into a model of buying.
3A similar debate has characterized Treasury auctions. Auctions for Treasury debt, both in

Europe and the USA, have typically been of the discriminatory type. However, after a
campaign led by Merton Miller and Milton Friedman, the US Treasury has been
experimenting with uniform-price auctions. For a particularly enlightening discussion of this
debate, see Binmore and Swierzbinski [2001]; for an empirical analysis, see Nyborg and
Sudaresan [1996].
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It has been shown that uniform-price auctions relax competition more than
discriminatory auctions because of the main feature that distinguishes both
types of auction formats. Namely, in the uniform-price auction, bidders are
only concerned about a single point in their bidding functions, the one
corresponding to the market price, whereas bidders in the discriminatory
auction care about their entire bidding schedules. This implies that in the
uniform-price auction, the inframarginal bids are pay-off irrelevant and can
be chosen so as to inhibit competition at themargin. For instance, if a bidder
submits a very steep bidding curve (i.e., relatively low inframarginal bids),
the residual demand curve facing his rivals will also be steep. A steep residual
demand curve implies that the opportunity cost of expanding production
beyond the bidder’s equilibrium quantity is high, so that artificially high
prices can be supported in equilibrium. In contrast, these high-price
equilibria cannot be supported in the discriminatory auctionbecause the low
inframarginal bids cannot be used as costless threats.
Our results show that the differences between uniform-price and

discriminatory auctions are strengthened when the possibilities of tacit
collusion are taken into account. To the best of our knowledge, this is the
first paper that provides such an analysis by explicitly modelling the
repetition of auctions.
We construct an infinitely repeated game of capacity-constrained price

competition among symmetric firms. In every period, competition takes
place by firms submitting a bid which specifies the minimum price at which
they are willing to supply their output up to capacity. The auctioneer ranks
firms in increasing order on the basis of their bids. The price that each
successful bidder receives for his output depends on the auction format in
place: either a uniform-price auction, under which firms receive the highest
accepted price offer, or a discriminatory auction, under which firms are paid
according to their individual price offers.
Within this set-up, we show that the lowest value of sustainable

profits (i.e., the value of the optimal penal code) coincides across auction
formats. The highest level of sustainable profits differs however, and it is
(weakly) higher in the uniform-price auction; the comparison is strict
when capacities are not too large relative to demand, and bidders are
not too patient. Themain reasonunderlying this result is that in the uniform-
price auction, whenever the two firms are called to produce, the low bid is
pay-off irrelevant. The low-bid can thus be used to relax the enforcement
problem and thereby to raise collusive profits over the highest level that is
sustainable in the discriminatory auction, in which both bids are pay-off
relevant.
This fact also has implications for the characterization of bidders’ optimal

collusive conduct along the equilibrium path. In the discriminatory auction
firms cannot do better than to collude on equal bids, whereas firms in the
uniform-price auction find it optimal (for some capacity values) to bid
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asymmetrically and to alternate the identity of the low and high bidders in
deterministic turns. In the uniform-price auction, asymmetric bidding
minimizes firms’ one-shot deviation gains, and pure bid rotating serves to
reward the firm with the strongest incentives to deviate with the largest
possible market share in the immediate future. Asymmetric bidding is not
optimal in the discriminatory auction since it would enhance bidders’
incentives to deviate.
To sum-up, our results imply that uniform-price auctions facilitate

collusion more than discriminatory auctions in the sense that the former
allow bidders to sustain collusive profits that are not reachable as a Subgame
Perfect Equilibrium of the latter.
The remainder of the paper is organized as follows. Section II describes

the basic model. Section III analyzes the one-shot game and section IV
explores the infinitely repeated game under the two auction formats. Section
V concludes by discussing the robustness of the results. The Appendix
contains most of the proofs.

II. THEMODEL

We focus on a stylized model with two symmetric firms,4 which compete
to sell an homogenous good to the market. Each firm is endowed
with productive capacity k, which is assumed to be perfectly divisible.
Marginal costs of production are normalized to zero up to capacity,
whereas production above capacity is impossible (i.e., infinitely
costly).
The market demand function is represented by D(P) and it is assumed to

satisfy the following standard assumptions: D(P) is a continuous, bounded
function; there exists a price P40 such that D(P)5 0 if and only if
P � P; DðPÞ is decreasing in P 8P 2 0;P

� �
;5 and PD(P) is strictly quasi-

concave in P 8P 2 0;P
� �

.
These assumptions guarantee that there exists a unique price Pm that

maximizes joint profits, and that whenever D(0)4k, there exists a unique
price Pr which maximizes a firm’s profits from serving the residual demand,
subject to firms’ capacity constraints. These prices will be respectively
referred to as themonopoly and residualmonopolist’s prices, and are formally

4The duopoly assumption is without loss of generality. The results of this paper could easily
be generalized to the (symmetric) oligopoly case.

5 The assumption that the demand function is downward sloping is important. Fabra, von
der Fehr and Harbord [2002] show that with an inelastic demand function, the monopoly
outcome could be sustained (for a large set of parameter values) as a one-shotNash equilibrium
in a uniform-price auction. Since only profit levels below that level can be sustained in the
discriminatory auction, this would imply that the conclusion that uniform-price auctions
facilitate collusionwould arise evenwithout the repetition of auctions. That is, by considering a
price-responsive demand function, we are taking the assumption that less favors our results.
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defined as

ð1Þ
Pm ¼max argmax

P
PDðPÞ;D�1ð2kÞ

� �
Pr ¼max argmax

P
P DðPÞ � k½ �;D�1ð2kÞ

� �
The timing of the game proceeds as follows. Each firm simultaneously and

independently submits a bid specifying the minimum price at which it is
willing to supply its production up to capacity, bi 2 <þ; i ¼ 1; 2. We use
b�(b1, b2) to denote the bid profile. On the basis of this bid profile, the
auctioneer calls firms to produce. If firms submit different bids, the low
bidder is despatched first. If its capacity is not sufficient to satisfy the total
demandat the lowprice, the high bidderwill be called toproduce the residual
demand, i.e., total demandat the high priceminus its rival’s capacity. If firms
submit equal bids, then firms split the market equally. Formally, the
quantity allocated to firm i, i5 1, 2, iaj, denoted by qi (b), is given by6

ð2Þ qiðbÞ ¼
minfDðbiÞ; kg if biobj
minf12DðbiÞ; kg if bi ¼ bj
minfmaxf0;DðbiÞ � kg; kg if bi4bj

8<:
The highest accepted bid in the auction is referred to as themarket price, and
it is denoted by P(b). For a given bid profile b�(bi, bj), i5 1,2, iaj, it can be
expressed as

ð3Þ PðbÞ ¼ bj if qjðbÞ40 and bi � bj
bi if qjðbÞ ¼ 0 and bi � bj

�
At the end of the game, each firm receives its profits. The auctioneer

announces the market price but does not disclose any information
concerning firms’ price offers nor quantity shares. Both firms are assumed
to be risk neutral, and hence aim to maximize their expected payoff. We
make the standard assumption that all aspects of the game are common
knowledge.
Throughout the paper, we shall consider two auction formats: discrimi-

natory and uniform-price auctions. Both the timing of the game, and the
quantities allocated to each firm for a givenbid profile are independent of the
auction format. Payments to firms depend upon the auction format
however. The price received by a firm for its output is equal to its own
bid in the discriminatory auction, and equal to the market price in the

6The rationing scheme implicit in this formulation is often referred to as the efficient
rationing scheme; it is ‘efficient’, in the sense that the consumers that value the good most are
served first. It has appeared, inter alia, in Brock and Scheinkman [1985], Kreps and
Scheinkman [1983] and Staiger and Wolak [1992].
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uniform-price auction. Hence, for a given bid profile b�(bi, bj), firm i’s
profits, i5 1, 2, iaj, in the discriminatory auction,pi

d (b), and in the uniform-
price auction, pi

u (b), can be expressed as,

pdi bð Þ ¼biqi bð Þ
pui bð Þ ¼P bð Þqi bð Þ;

where qi(b) and P(b) are respectively determined by (2) and (3).

III. THE ONE-SHOT GAME

Themain objective of this paper is to compare the sustainability of collusive
outcomes across auction formats within an infinitely repeated game. As is
well understood, there are two main factors affecting the sustainability of
collusion: the severity of the (credible) punishment threat and the value of
the one-shot deviation gains. The stronger the punishment threat and the
weaker the incentives to deviate, the easier it is to sustain collusion.Hence, in
order to characterize the most profitable collusive equilibrium, one has to
first, (i) find the lowest level of profits a firm can be credibly held down to;
and second, (ii) identify the pairs of bids which, for a given level of joint
profits, minimize firms’ one-shot deviation gains. With these purposes, we
devote this section to the analysis of the one-shot game.
Firm i’s, i5 1, 2, minmax profit, denoted p, is defined as the least amount

that firm j, jai, can hold firm i’s profits down to. It is easy to see that this
occurs when firm j is bidding all its capacity at zero, i.e.
p ¼ max 0; argmaxbi DðbiÞ � k½ �bif g, i5 1, 2. The following Lemma char-
acterizes p under the two auction formats.

Lemma 1. Under uniform-price and discriminatory auctions, minmax
profits can be characterized as follows:

(i) If kZD(0), minmax profits equal zero.
(ii) If koD(0), minmax profits are equal to the profits of the residual

monopolist, Pr [D(Pr)� k].

Proof. It follows by definition of Pr, as given in (1).

Lemma1 shows that, unless that a single firm’s capacity is enough to cover
all demand at marginal cost, a firm can always secure positive profits by
bidding at the residualmonopolist’s price.Given that in this case the residual
monopolist’s price exceeds zero, the price received by the minmaxed firm
equals the market price. Therefore, minmax profits coincide across auction
formats.
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The following Lemma characterizes a firm’s profits at its best response to
any arbitrary bid of the rival.

Lemma 2. Under the two auction formats, firm i’s profits at its best
response to any arbitrary bid bjA[0,Pm] are equal to supbiobj bi min k;DðbiÞf g
if bj4

p
k, and are equal to its minmax profits p otherwise, i5 1, 2, iaj.

Proof. See the Appendix.

The intuition underlying the proof of Lemma 2 is as follows. On the one
hand, a firm might consider undercutting the rival’s bid in order to increase
its production with only a negligible effect (if any) on the market price. On
the other hand, if bidding a higher price leaves the competitor capacity
constrained, a firm might also consider maximizing its profits over the
residual demand. When the rival’s price is high, undercutting it is more
profitable, but when the rival’s price is low, becoming the residual
monopolist becomes more profitable even if this could involve selling below
capacity.
We conclude that by making the bid of one firm sufficiently low, the

remaining firm’s best response profits can be driven down to the residual
monopolist’s profits, which coincide with the minmax. These results apply
equally under the two auction formats given that, at its best response, a
firm’s bid in the discriminatory auction coincides with (or is arbitrarily close
to) the market price.
We define firm i’s, i5 1, 2, iaj, one-shot deviation gains from an arbitrary

bid profile (bi, bj) as the difference between firm i’s profits at its best response
to bj and the profits it would get at the bid profile (bi, bj), i.e.
supbi pi bi; bj

� �
� pi bi; bj

� �
. Building on Lemma 2, the following Lemma

identifies the bid profile(s) that minimizes firms’ one shot deviation gains
among the sets of bid profiles yielding a given level of joint profits.

Lemma 3. Consider the set of bid profiles that yield joint profits
PDðPÞ 2 2p;PmDðPmÞð �. The bid profile(s) that minimizes the maximum
between firm 1 and 2’s one-shot deviation gains can be characterized as
follows:

(i) In the discriminatory auction, it is symmetric, with bi5P, i5 1, 2.
(ii) In the uniform-price auction, if koD(P), it is asymmetric, with bi5P

and bj � p
k; i ¼ 1; 2; i 6¼ j; it is symmetric otherwise.

Proof. See the Appendix.

When the capacity of a single firm is not enough to satisfy all demand, the
two auction formats are not equivalent in terms of the bid profiles that
minimize firms’ one-shot deviation gains. The different patterns derive from
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the main feature that distinguishes both auction formats. Namely, in the
uniform-price auction all firms (conditional upon being despatched) are
paid the price offered by the marginal firm rather than their own bid, as it is
the case in the discriminatory auction.
This implies that in the uniform-price auction, it suffices that one firmbids

atP and the other firm bids prices no greater thanP for joint profits to equal
PD(P). If firms bid asymmetrically, the low bidder would have no incentives
to deviate, given that it sells all its capacity at the rival’s price. Furthermore,
given that the low bid is pay-off irrelevant, it can be set ‘low’ enough so that
the high bidder finds it optimal to deviate by charging the residual
monopolist’s price rather than to undercut the low bid (Lemma 2). This
drives the high bidder’s deviation profits to the minmax, and thereby
minimizes its one-shot deviation gains.
The incentive structure induced by asymmetric bidding in the uniform-

price auction cannot be replicated in the discriminatory auction. Given that
both bids are pay-off relevant, making one bid sufficiently ‘low’ in order to
drive the high-bidder’s deviation profits to its minmax would come at the
cost of reducing joint profits below 2p.7 With both firms bidding ‘high’
prices, either firm could increase its profits by slightly undercutting the rival
in order to sell at capacity at the rival’s price.Making bids symmetric allows
reducing both firms’ deviation profits and increasing the equilibrium profits
of at least one-firm with respect of the case in which bids are asymmetric.
This implies that firms’ one-shot deviation gains in the discriminatory
auction are minimized through symmetric bidding.
From Lemma 3, it follows directly that firms’ one-shot deviation gains in

the uniform-price auction can be made (weakly) lower than in the
discriminatory auction, where the comparison is strict for the cases in
which asymmetric bidding is optimal in the uniform-price auction. This is
formally stated in the Proposition below.

Proposition 1. Assume that firms play the bid profiles identified in Lemma
3. Then, (i) the maximum between firm 1 and 2’s one-shot deviation gains is
strictly lower in the uniform-price auction than in the discriminatory auction
if and only if koD(P), and (ii) it is equal otherwise.

Proof. It follows from the proof of Lemma 3.

The last Proposition of this section shows that, under the two auction
formats, both firms’ profits canbe driven down to theminmax throughNash
equilibrium play.

7The high bidder’s profits are no greater than p. Therefore, the low bidder, which is selling at
capacity at its own price, must bid above

p
k
for joint profits to be greater than 2p:
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Proposition 2. Under the two auction formats, both firms’ profits are
driven down to the minmax at the unique symmetric one-shot Nash
equilibrium.

Proof. See the Appendix.

The characterization of the one-shot Nash equilibria in the uniform-price
and discriminatory auctions crucially depends on the relationship between
demand and firms’ capacities. When capacities are such that demand at
marginal cost exceeds the capacity of a single firm (case (i) in Lemma 1), the
unique symmetric Nash equilibrium under the two auction formats involves
firms’ bidding at marginal cost, thus earning zero profits. This is just the
Bertrand equilibrium.
When demand at marginal cost exceeds the capacity of a single

firm (case (ii) in Lemma 1), the nature of the one-shot Nash
equilibria depends on whether a single firm has enough capacity to satisfy
all demand at its best response to the rival selling at capacity, or not
(i.e., on whether the residual monopolist’s price lies above or is equal to
D� 1(2k)).
When, at the residual monopolist’s price, both firms would sell at

capacity, the unique symmetric Nash equilibrium under the two auction
formats involves both firms’ bidding at D� 1(2k), thus earning minmax
profits. If firms tie at prices below D� 1(2k), either firm could increase its
profits by bidding above that level while still selling at capacity. If both firms
tie at prices above D� 1(2k), capacities would not be binding; therefore,
either firm would find it optimal slightly to undercut the rival’s bid in order
to sell at capacity, with no effect on the market price in the uniform-price
auction, and only a negligible reduction in the price received in the
discriminatory auction.
In the remaining case, in which the residual monopolist’s price is

larger than D� 1(2k), a symmetric equilibrium in pure strategies fails
to exist. Following Lemma 2, if firms tie at prices no greater than

p
k
, either

firmwould be better off by bidding at the residualmonopolist’s price; if firms
tie at prices above

p
k, then either firm could increase its profits by slightly

undercutting the rival. Thus the unique symmetric equilibrium under the
twoauction formats involvesmixed strategypricing,with firms randomizing
their offer prices within a support bounded above by the residual
monopolist’s price. Given that when a firm is bidding at this upper bound,
the rival is bidding below that level with probability one and given that all
prices in the support yield an equal level of profits, both firms’ expected
equilibrium profits coincide with the residual monopolist’s profits, i.e., the
minimax.
With these results, we are now ready to analyze the infinitely repeated

game.
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IV. THE INFINITELY REPEATED GAME

In this section, we explore an infinitely repeated version of the stage game
described above. In the infinitely repeated game, a strategy for firm i, i5 1, 2,
is an infinite sequence of functions Si5 (S i(1), Si (2),y,Si (t),y), where Si

(1) is a determinate initial bid, and Si (t) is a function that maps the market
prices and the quantities allocated to firm i in periods 1, 2,y, t� 1 into a bid
bi (t) for firm i in period t. Recall that onlymarket prices are observed, so that
the strategy of one firm cannot be conditioned on the bids submitted by its
rival in previous periods. The strategy profile (S1, S2) induces a path of bid
profiles (b(1), b(2),y, b(t),y), where b(1)5 (S1(1), S2(1)), and given (b(1),
b(2),y, b(t� 1)), firm i’s bid in period t is a function of the partial history of
the game with length t� 1 observed by firm i, i.e., bi(t)5Si(qi (b(1)),
P(b(1)),y,qi (b(t� 1)),P(b(t� 1))). The payoff function for firm i, i5 1, 2, is
the sum of its discounted profits, where dA(0,1) is firms’ common discount
factor.
One of the aims of this analysis is to characterize the sets of profits that are

supportable by a Subgame Perfect Equilibrium under uniform-price and
discriminatory auctions. Proposition 2 guarantees that the symmetric Nash
equilibrium yields minmax profits to both firms. Since lower profits would
not be sustainable, theminmax level represents the lower bound of the set of
sustainable profits. To characterize the upper bound of this set, assume
throughout the remainder of the paper that firms select a path of bid profiles
so as to maximize joint profits, subject to the constraint that such a path be
sustainable by a Subgame Perfect Equilibrium. A path is supportable by a
Subgame Perfect Equilibrium if and only if it is supportable by an optimal
penal code, e.g., the infinite reversion to the symmetric Nash equilibrium.8

The associated trigger strategy profile can be expressed as, for i5 1, 2,

ð4Þ

Sið1Þ ¼ bci ð1Þ
For t 2 f2; 3; . . . ; g;

SiðtÞ ¼
bci ðtÞ if PðbðtÞÞ ¼ PðbcðtÞÞ and

qiðbðtÞÞ ¼ qiðbcðtÞÞ; 8t 2 f1; . . . ; t� 1g;
bNi otherwise

8><>:
where, as defined in (3), P(b(t)) is the market price in period t; as defined in
(2), for a given bid profile b(t), qi(b(t)) is the quantity allocated to firm i in

8 Similar results would be obtained if we allowed the punishment phase to last for a finite
number of periods, just as long as such a penal code is optimal, i.e., the discounted sum of
punishment profits must be the same as if firms were minmaxed in every period. Therefore, for
the current purposes of the analysis, we are unconcerned about the particular shape of the
punishment phase. For an analysis of optimal penal codes in price-setting supergames with
capacity constraints, see Lambson [1988].
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period t; bi
c (t)A[0, Pm] is firm i’s collusive bid in period t; and bi

N is firm i’s
(possibly random) bid at the symmetric one-shot Nash equilibrium.
In words, the strategy profile (4) prescribes firms to submit the collusive

bid in period 1 and to follow the collusive path as long as both firms have
done the same in all previous periods. If a firm deviates, both firms are called
to start playing the symmetric Nash equilibrium in all periods after the
deviation has taken place.
It is straightforward to show that the necessary and sufficient conditions

for the strategy profile in (4) to form a Subgame Perfect Equilibrium of the
infinitely repeated game are, for all firms, i5 1, 2, iaj, and all periods tZ1,

ð5Þ
X1
t¼tþ1

dt�tpi bcðtÞð Þ � sup
bi

pi bi; b
c
j ðtÞ

� �
� pi bcðtÞð Þ

" #
� d

1� d
p:

Intuitively, the incentive compatibility constraint above says that what a
firm loses by deviating (i.e., the discounted value of future collusive profits
net of the one-shot deviation gain) should at least be equal to the net present
value of the stream of minmax profits that the deviant firm would receive
along the (optimal) punishment path.
Note that the right hand side of (5) is constant and equal for both firms.

Thus the incentive compatibility constraint that binds first, is that of the firm
for whom the left hand side of (5) is the lowest (as long as such a firm has
strictly positive one-shot deviation gains). Accordingly, for a given level of
joint profits, the optimal collusive scheme(s) will be the one(s) that
maximizes the difference between the discounted sum of profits under
collusion and the one-shot deviation gains of the firm for which this
difference is the smallest.
The following Proposition characterizes the optimal collusive schemes

under the two auction formats.

Proposition 3. Consider the paths of bid profiles that yield joint profits
PDðPÞ 2 2p;PmDðPmÞð � in every period.

(i) In the discriminatory auction, the optimal collusive scheme involves
symmetric bidding in all periods, i.e., bi (t)5P, i5 1, 2, tZ1.

(ii) In the uniform-price auction, the optimal collusive scheme involves
symmetric bidding in all periods if and only if kZD(P), and asymmetric
bidding and pure bid rotating, with biðtÞ ¼ bjðtþ 1Þ � p

k
and bj (t)5 bi

(tþ 1)5P, i5 1, 2, iaj, tZ1, otherwise.

Proof. See the Appendix.

Note that, for some capacity values, the optimal collusive scheme
in the uniform-price auction involves asymmetric bidding, with one firm
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submitting a sufficiently low price,9 and firms rotating the identity of the low
and high bidders in deterministic turns. This collusive scheme simultaneously
minimizesfirms’one-shotdeviationgains (Lemma3)andservesasa transfer role
rewarding the high bidder with the largest possible market share in the future.
We can now build on the previous results to compare the maximum level

of joint profits that, for a given discount factor, can be sustained under the
two auction formats.

Proposition 4. For given dA(0, 1), the highest sustainable profit level in the
uniform-price auction (weakly) exceeds the one in the discriminatory
auction; the comparison is strict if and only if koD(0) andmonopoly profits
are not sustainable in the discriminatory auction.

Proof. See the Appendix.

The proof of Proposition 4 follows from our previous results. Firstly,
firms in the discriminatory auction cannot do better than to collude on
symmetric bid profiles. Since symmetric bidding induces the same incentives
under the two auction formats, firms in the uniform-price auction can at
least sustain the same profit level as in the discriminatory auction.
For capacity values such that demand at marginal cost exceeds the

capacity of a single firm, the highest price that can be sustained in the
discriminatory auction exceeds the capacity a single firm. This implies that,
in the uniform-price auction, the high bidder’s incentive compatibility
constraint would be satisfied with slack when evaluated at the optimal
collusive scheme yielding the maximum profit level that can be sustained in
the discriminatory auction. If such a level is belowmonopoly profits, firms in
the uniform-price auction can raise collusive profits above themost collusive
profit level in the discriminatory auctionwhile still satisfying firms’ incentive
compatibility constraints.
Last, when demand at marginal cost does not exceed the capacity of a

single firm, the twoauctions are strategically equivalent, and thus result in an
equal level of sustainable profits.
To conclude, these results imply that the uniform-price auction facilitates

collusion in the sense that it allows bidders to obtain equilibriumprofit levels
that are not sustainable as a Subgame Perfect Equilibrium of the
discriminatory auction.

9The same incentive structure could be replicated by making the low bidder randomize its
bids as in the symmetric one-shot Nash equilibrium for k values such that koD(0) and
Pr4D� 1(2k). Note that in this case, firms’ one-shot deviation gains are unaltered, as the low
bidder has no incentives to deviate and the high bidder cannot obtain deviation profits greater
than its minmax. This reduces the disparity between bids andmay be preferable in the presence
of a vigilant competition authority that becomes suspicious when bids are too asymmetric. See
section V for more on this.
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V. CONCLUDING REMARKS

In this paper we have analyzed an infinitely repeated game of capacity-
constrained price competition among two symmetric firms. We have used
this model to characterize the optimal collusive schemes and sets of profits
that can be sustained under two commonly used auction formats: the
uniform-price and discriminatory auctions.
The model predicts that firms in the discriminatory auction cannot do

better than to collude on symmetric equilibria. In contrast, firms in the
uniform-price auction find it optimal (for some capacity values) to
implement collusive schemes characterized by asymmetric bidding and bid
rotating. These schemes reduce the profitability of defections and increase
the value of future cooperationmore than symmetric bidding. Therefore, for
a given discount factor, the maximum level of sustainable profits in the
uniform-price auction is (weakly) higher than the one that arises in any
equilibrium of the discriminatory auction. Thus, uniform-price auctions
(weakly) facilitate tacit collusion.
The last remarks concern the robustness of the results to relaxing some of

our simplifying assumptions.10 First, let us allow firms (as it is the case in
electricity auctions) to submit different bids for different blocks of output,
instead of a single bid. It is possible to show that our previous results
concerning the comparison of collusive possibilities across auction formats
remain valid. To see this, note that in the uniform-price auction firms’
deviation profits are driven down to the minmax only if one firm bids all its
units at sufficiently low prices. This makes it unprofitable for the low-
bidding firm to deviate, and for the high bidding firm to undercut the low
bids. With one firm’s becoming a monopolist over the residual demand, it is
inconsequential whether the rival’s capacity is divided into one or several
units. Last, with the remaining firm’s earning higher equilibriumprofits than
its rival, the optimal collusive scheme involves pure-bid rotating, as before.
Second, we have assumed that market conditions remain constant over

time. Suppose instead (similarly to Staiger andWolak [1992]), that demand
is subject to stochastic shocks that are realized and observed before firms
make their pricing decisions. It is possible to show that demand uncertainty
facilitates collusion more under the uniform-price auction than under the
discriminatory auction. In the uniform-price auction, firms’ ability to reduce
their one-shot deviations through asymmetric bidding has a double effect on
the profitability of collusion: for some demand realizations, it allows raising
collusive prices over the ones sustainable through symmetric bidding; this, in
turn, leads to an increase in the future losses from cheating at all other
demand realizations. This indirect effect implies that collusive prices can be

10The formal statements andproofs for the following two results are available atThe Journal
of Industrial Economics’ website.
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raised at all demand realizations, and not only at those at which the optimal
collusive schemes are asymmetric.
Last,wehavenot considered the case inwhich collusive behavior is subject to

legal prosecution. An analysis of this issue would face us with the following
questions: could the legal authority uncover the conspiracy when bidders
colludeon theoptimal schemes identifiedabove? If so,would the rankingacross
auctions be altered if bidders tried to reduce the probability of detection by
making their strategies ‘less visible’?11 In the discriminatory auction, for some
capacity values, the probability that bidders submit equal bids at a one-shot
Nash equilibrium is zero. Thus, the existence of a collusive agreement could be
inferred from the fact that bids are identical. The detection of collusion would
be harder in the uniform-price auction given that asymmetric bidding and
market share instability also arise at the one-shot Nash equilibria (see Fabra,
von derFehr andHarbord [2002]). Furthermore, even if bidders departed from
asymmetric bidding and pure bid rotating, the most collusive equilibrium
would still bemore profitable than in the discriminatory auction. For instance,
bidders could depart from pure bid rotating by colluding on the symmetric
correlated equilibrium (i.e., the probability of playing the role of the high and
low bidder is equal for both firms and independent of a firm’s previous period’s
role).This schemewould reduce themaximumlevel of sustainableprofits (given
that the high bidder’s losses from cheating would be smaller) but it would still
imply that collusion is more profitable than under the discriminatory auction
(given the weaker incentives to deviate achieved through asymmetric bidding).
Also, thedegreeofbidasymmetrycouldbe reducedby letting the lowbidderbid
as in the one-shot Nash equilibrium, i.e., depending on the capacity values,
either randomizing its bid or charging the maximum price at which both firms
sell at capacity. This would not reduce the highest level of sustainable profits
since the high bidder’s profits at its best response to the low bidder’s strategy
would also equal minmax profits.
To conclude, the interest of this analysis from the policy oriented perspective

is two-fold: firstly, from a regulation point of view, it sheds some light on the
design of those market rules that reduce the scope for collusion; and secondly,
from the antitrust point of view, it identifies the observable differences between
competitive andcollusive conduct andcan therebybeused to tailor theantitrust
policies to the detection and mitigation of collusion.

APPENDIX

Proofs of Lemmas and Propositions

Proof of Lemma 2. Assume bj4
p
k
. If D(bj)4k, then by slightly undercutting bj firm i

would get profits supbiobj bik. These profits are greater than what it would get by tying

11 See LaCasse [1995] for a formal analysis of this issue in a simple auction model.

284 NATALIA FABRA

r Blackwell Publishing Ltd. 2003.



at bj, bj
DðbjÞ
2
, and exceed the highest level of profits that it could make by bidding above

bj ; p. If D(bj)rk, then by slightly undercutting bj firm i would get profits

supbiobj biDðbiÞ, which exceed the profits that it would make by tying at bj, bj
DðbjÞ
2
, or

by bidding above bj, zero. Thus supbi pi bi; bj
� �

¼ supbiobj bi min k;DðbiÞf g.
Assume bj � p

k
. Then, by bidding above bj firm i could get profits p, which are

(weakly) greater than the profits that it would get from undercutting bj,

supbiobj bi min k;DðbiÞf g, or from tying at bj, bj min k;
DðbjÞ
2

n o
. Thus supbi pi bi; bj

� �
¼ p.

Proof of Lemma 3. Let Gi (bi ,bj), i5 1, 2, iaj, be firm i’s one-shot deviation

gain, i.e.

Gi bi; bj
� �

� sup
bi

pi bi; bj
� �

� pi bi; bj
� �

:

(i) Discriminatory auction:

We want to show that, among the set of bid profiles that yield joint profits

PDðPÞ 2 2p;PmDðPmÞð �, the asymmetric bid profiles with b1ab2 would give higher

one-shot deviation gains than the symmetric bid profiles with b15 b2, for at least one

firm.

W.l.o.g. index firms such that b1rb2. First, assume kZD(P). Hence, the bid profiles

yielding joint profits PD(P) satisfy b15Prb2. Since Pk4P
DðPÞ
2
4p, then

b2 � b1 ¼ P4p
k
. By Lemma 2, supbi pi bi; bj

� �
¼ PDðPÞ; i ¼ 1; 2.

Consider the symmetric bid profile b15 b25P. Hence, pi P;Pð Þ ¼ 1
2
DðPÞP; i ¼ 1; 2

and

ð6Þ Gi P;Pð Þ ¼ 1

2
DðPÞP; i ¼ 1; 2:

Consider the asymmetric bid profiles b15Pob2. Hence, p2 P; b2ð Þ ¼ 0, and

G2 P; b2ð Þ ¼ DðPÞP4Gi P;Pð Þ:

Last, assume koD(P). The bid profiles yielding joint profits PD(P) must satisfy

b1kþ [D(b2)� k] b25D(P)P and D(b2)A(k, 2k). It is easy to verify that for (b1, b2) to

belong to this set, we need b14
p
k
and b2ZP. By Lemma 2, supbi pi b1; b2ð Þ ¼

bjk; i ¼ 1; 2; i 6¼ j.

Consider the symmetric bid profile b15 b25P. Since pi P;Pð Þ ¼
1
2
DðPÞP; i ¼ 1; 2, we have that

ð7Þ GiðP;PÞ ¼ kP� 1

2
DðPÞP; i ¼ 1; 2:

Consider the asymmetric bid profiles
p
k
ob1oPob2. We then have p1 b1; b2ð Þ ¼ b1k

and p2 b1; b2ð Þ ¼ Dðb2Þ � k½ �b2. Hence,

ð8Þ G1 b1; b2ð Þ ¼ b2 � b1½ �k

ð9Þ G2 b1; b2ð Þ ¼ b1k� Dðb2Þ � k½ �b2

Summing up (8) and (9) and dividing by two,

ð10Þ G1 b1; b2ð Þ þ G2 b1; b2ð Þ
2

¼ b2k�Dðb2Þb2
2

:
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Comparing (7) and (10), we obtain that for every asymmetric bid profile yielding joint

profits PD(P),

Gi P;Pð ÞoG1 b1; b2ð Þ þ G2 b1; b2ð Þ
2

given that (10) is increasing in b2 and b24P.

Now, for b1 6¼ Dðb2Þb2
2k

; G1ðb1; b2Þ 6¼ G2ðb1; b2Þ. Thus, we either have thatG1ðb1; b2Þ4
GiðP;PÞ or G2ðb1; b2Þ4GiðP;PÞ. For b1 ¼ Dðb2Þb2

2k
; G1ðb1; b2Þ ¼ G2ðb1; b2Þ4GiðP;PÞ;

which completes the proof.

(ii) Uniform-price auction:

Assume kZD(P). The proof for this result is similar to the one for the discriminatory

auction.

Assume koD(P). Given koD(P), the bid profiles yielding joint profits PDðPÞ 2
2p;PmDðPmÞð � satisfy b1rb25P.Wewant to show that, among this set of bid profiles,

the bid profiles (bi, P) with
p
k
obi � P would lead to higher one-shot deviation gains

than the asymmetric bid profiles (bi, P), with bi � p
k
.

W.l.o.g. index firms such that b1rb2. For the asymmetric bid profiles b1oP5 b2, we

have p1 b1;Pð Þ ¼ Pk, and p2 b1;Pð Þ ¼ DðPÞ � k½ �P. Consider first the asymmetric bid

profiles with b1 � p
k
ob2 ¼ P. Following Lemma 2, supb2 p2 b1; b2ð Þ ¼ p, and

supb1 p1 b1;Pð Þ ¼ Pk. We then have that

ð11Þ G2 b1;Pð Þ ¼ p� DðPÞ � k½ �P40 ¼ G1 b1;Pð Þ:

Second, consider the asymmetric bid profiles with
p
k
ob1ob2 ¼ P. Following Lemma2,

supbi pi b1; b2ð Þ ¼ bjk; i ¼ 1; 2; i 6¼ j. Therefore,

ð12Þ G2 b1;Pð Þ ¼ b1k� DðPÞ � k½ �P40 ¼ G1 b1;Pð Þ:

Since the value of G2 b1;Pð Þ in (12) exceeds the one in (11), the bid profiles with b1 �
p
k
ob2 ¼ P are the ones that minimize firms’ one-shot deviation gains among the set of

asymmetric bid profiles.

Last, comparing (11) with the one-shot deviation gains generated by the symmetric

bid profile, (7), we get,

G2ðb1;PÞ � GiðP;PÞ ¼ p� 1

2
DðPÞPo0; for b1 �

p
k
;

which completes the proof.

Proof of Proposition 2. The proof for the case in which kZD(0) is similar to the

Bertrand result.

Assume koD(0). By Lemma 1, p ¼ Pr DðPrÞ � k½ �. We claim that there exists a

unique symmetric equilibrium under the two auction formats; at this equilibrium each

firm’s profits equal Pr [D(Pr)� k].

Firstly, we show that if Pr5D� 1(2k), the bid profiles bi5D� 1(2k),

i5 1, 2, constitute an equilibrium under both auction formats. To prove existence,

observe that neither firm can increase its profits by bidding above its equilibrium bid,

given that D� 1(2k) is the price that maximizes the residual demand faced by the high

bidder. Last, note that neither firm can increase its profits by bidding below its

equilibrium bid, given that it is already producing at capacity. To prove uniqueness of
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the symmetric equilibrium, note that we cannot have an equilibrium with

b15 b25 b4D� 1(2k), given that either firm could increase its profits by slightly

undercutting b, thus making profits bk41
2
bDðbÞ; we cannot have an equilibrium with

b15 b25 boD� 1(2k), given that either firm could increase its profits by bidding at

D� 1(2k), thus making profitsD� 1 (2k)k4bk. Furthermore, it is easy to show that this

equilibrium is unique in the discriminatory auction; and that the equilibrium outcome

(not the equilibrium) is also unique in the uniform-price auction (see Fabra, von der

Fehr and Harbord [2002].)

And secondly, we show that if Pr4D� 1(2k), there cannot exist a symmetric

equilibrium in pure strategies. At a symmetric equilibrium, with b15 b25P, each firm

makes profits 1
2
PD Pð Þ. If P � p

k
, a firm could increase its profits by bidding at Pr, to

obtain profits p41
2
PD Pð Þ; if P4p

k
, a firm could increase its profits by slightly

undercutting P, thus obtaining profits Pk41
2
PD Pð Þ. Thus the unique symmetric

equilibrium is in mixed strategies.

Let Fi (p)5Pr {birp} denote the equilibrium mixed-strategy of firm i, i5 1, 2,

with fiðpÞ ¼ FiðpÞ, and let Oi be the support of Fi. Standard arguments imply

that O1 \ O2 ¼ ðp; pÞ (or, ½p; pÞ), and that F1 and F2 do not have mass points on ½p; pÞ.
We want to demonstrate that at the unique symmetric mixed-strategy equilibrium,

firm i’s expected profits are given by Pr [D(Pr)� k] i5 1, 2, under the two auction

formats.

Uniform-price auction: Firm i’s expected profits when bidding p can be written as,

pui ðpÞ ¼ p DðpÞ � k½ �F pð Þ þ
Z p

p

ukf uð Þdu

On p; p
� �

, strategies must satisfy the following differential equations:

ð13Þ FðpÞ DðpÞ � kþ pDðpÞ½ � � f pð Þp 2k�DðpÞ½ � ¼ 0; i ¼ 1; 2:

The first element on the left-hand side of (13) represents the gain to a firm from the

resulting increase in the price received in the event that the rival bids

below. The second element represents the loss from reducing the chance of being

despatched at full capacity instead of serving the residual demand only (the difference

being k� [D(p)� k]5 2k�D(p)). On the interior of the support of themixed strategies

the net gain from raising the bid marginally must be zero. In particular, the first order

condition
qpui ðpÞ
qp ¼ 0 evaluated at p becomesDðpÞ � kþ pDðpÞ ¼ 0, which determines p

uniquely, p ¼ Pr. Since when a firm is bidding at Pr the rival is bidding below with

probability one, it follows that expected profits are given by Pr [D(Pr)� k].

Discriminatory auction: Firm i’s, i5 1, 2, profit when bidding p may be written

pdi ðpÞ ¼ p FjðpÞ DðpÞ � k½ � þ 1� FjðpÞ
� �

k
	 


:

A necessary condition for firm i to be indifferent between any price inOi is that, for all

p 2 Oi; pdi ðbÞ ¼ pi, implying

FjðpÞ ¼
k

2k�DðpÞ 1� pi
pk

� �
:
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The boundary condition FjðpÞ ¼ 1 implies

pi ¼ DðpÞ � k½ � p:

We must also have
qpdi ðpÞ
qp ¼ 0; in particular,

p ¼ Pr;

so that

pi ¼ DðPrÞ � k½ �Pr:

Finally, the condition FjðbÞ ¼ 0 implies

b ¼ 1

k
DðPrÞ � k½ �Pr ¼ p

k
:

Proof of Proposition 3. W.l.o.g. let b1rb2, and index firm i (j), i5 1, 2, iaj, as firm 1

(2) in period t, if bi
c (t)5 b1rbj

c (t)5 b2. In words, firm 1 is the low bidder, and firm 2 is

the high bidder.

Throughout the proof, we will assume that, in every period, firms can observe the

realization of some public randomization devicewhich selects the firm thatwill play the

role of the low bidder in a given period. We will allow the process to depict correlation

across time in the following way: if firm i has been selected to play the role of the low

bidder in period t, then in period tþ 1, it will be selected to play the role of the low

bidder with probability a and the role of the high bidder with probability (1� a), with
aA[0,1].12 To simplify notation, let V1 (b; a) (and alternatively V2 (b; a)) denote the

present discounted value in period tof firm i’s (firm j’s) profits fromperiod tþ 1 into the

future if firm i has played the role of the low (high) bidder in period t. Last, let p1 (p2)
denote the profits of firm i in a given period in which it plays the role of the low (high)

bidder. We thus can construct V1 and V2 as follows,

V1ðb; aÞ ¼d a p1 þ dV1ðb; aÞ½ � þ 1� a½ � p2 þ dV2ðb; aÞ½ �f g
V2ðb; aÞ ¼d a p2 þ dV2ðb; aÞ½ � þ 1� a½ � p1 þ dV1ðb; aÞ½ �f g

:

With some algebra,

ð14Þ
V1ðb; aÞ ¼XðaÞfp2 þ ½p1 � p2�aþ ½1� 2a�p1dg
V2ðb; aÞ ¼XðaÞfp1 � ½p1 � p2�aþ ½1� 2a�p2dg

:

Note that for the symmetric bid profiles we have

ð15Þ V1 P;Pð Þ ¼ V2 P;Pð Þ ¼ d
1� d

DðPÞP
2

(i) Discriminatory auction: The method of proof will be to show that for every

asymmetric path of bid profiles, with b1ob2, yielding joint profits PD(P) in every

12Note that this assumption iswithout loss of generality, as it encompasses all possibilities; in
particular, if a ¼ 0 firms play the roles of the high and low bidder in deterministic turns, if a5 1
firms do not change roles over time (e.g., the low bidder keeps on being the low bidder for ever),
and if a ¼ 1

2
the process is stationary (i.e., the public signal is i.i.d.), with a firm’s role in the

current period having no impact on its next period’s role.
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period, the following condition is satisfied:

ð16Þ minfViðb; aÞ � GiðbÞgoViðP;PÞ � GiðP;PÞ if GiðbÞ40; i ¼ 1; 2
Viðb; aÞ � GiðbÞoViðP;PÞ � GiðP;PÞ if GjðbÞ40; i 6¼ j:

Since this implies that the critical discount factor that makes the relevant incentive

compatibility constraint binding is lower under the symmetric path than under any

other path yielding joint profits PD(P) in every period, this is sufficient to prove

Proposition 3 (i).

First, assume kZD(P). Consider the asymmetric bid profiles yielding joint profits

D(P)P, i.e. b15Pob2. Firms’ one-shot deviation gains are given by

G1 P; b2ð Þ ¼Dðb2Þb2 �DðPÞP
G2 P; b2ð Þ ¼DðPÞP

:

By setting b2 arbitrarily close toP, the low bidder’s one-shot deviation gains are driven

down to zero. Thus, the relevant incentive compatibility constraint is that of the high

bidder.Wewant to choose a so as tomaximizeV2 (P, b2; a)�G2 (P, b2).Note thatV2 (b;

a)�G2 (b) is decreasing in a: the greater a, the greater the probability that the high

bidder today will keep on playing the role of the high bidder tomorrow, thus earning

zero profits rather thanD(P)P. Hence, it is optimal to set a5 0, i.e. to let firms play the

roles of the high and low bidder in deterministic turns. Therefore, for the asymmetric

bid profiles b15Pob2,

ð17Þ V2ðP; b2; 0Þ � G2 P; b2ð Þ ¼ d

1� d2
DðPÞP�DðPÞP:

Consider the symmetric bid profiles b15 b25P. Firms’ one-shot deviation gains are

given by (6). Using (15), we then have

ð18Þ Vi P;Pð Þ � GiðP;PÞ ¼
d

1� d
DðPÞP

2
�DðPÞP

2
:

Simple algebra shows that (18) exceeds (17). Hence, condition (16) is satisfied.

Last, assume koD(P). Consider the asymmetric bid profiles yielding joint profits

D(P)P. As in the proof ofLemma3, thesemust satisfy b1kþ [D(b2)� k]b25D(P)P and

koD(b2). Firms’ one-shot deviation gains from the asymmetric bid profiles are as in (8)

and (9). Since both firms have positive one-shot deviation gains, the objective is to

choose a so as to maximize the min V1ðb; aÞ � G1ðbÞ;V2ðb; aÞ � G2ðbÞf g. Note that

V2 (b; a)�G2 (b) is decreasing in a: the greater a, the greater the probability that the high
bidder today will keep on playing the role of the high bidder tomorrow, thus earning

profits (D(b2)� k)b2rb1 k. For the opposite reason,V1 (b; a)�G1 (b) is increasing in a.
Therefore, we have to find the value of a ¼ baa, such that V1ðb;baaÞ�
G1ðbÞ ¼ V2ðb;baaÞ � G2ðbÞ. Using (14), simple algebra shows that

baa ¼ 1

2
1� 1

d
G2ðbÞ � G1ðbÞ

G1ðbÞ

� �
:

And,

ð19Þ Viðb;baaÞ � GiðbÞ ¼
d

1� d
DðPÞP

2
� b2k�Dðb2Þb2

2

� �
; i ¼ 1; 2:
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Since wemust have aA[0, 1), then the constrained solution equals (19) if baa 2 0; 1½ Þ, and
is lower than (19) otherwise. Hence, showing that ViðP;PÞ � GiðP;PÞ exceeds (19) is
sufficient to prove the statement.

Firms’ one-shot deviation gains from the symmetric bid profile are as in (7). Hence,

ð20Þ ViðP;PÞ � GiðP;PÞ ¼
d

1� d
DðPÞP

2
� Pk�DðPÞP

2

� �
; i ¼ 1; 2:

Since (19) is decreasing in b2 and b24P, then (20) exceeds (19). Therefore, condition

(16) is satisfied, which completes the proof.

(ii)Uniform-price auction: For the case in which koD(P), the proof is similar as the

proof for the discriminatory auction, given that in this case the two auction formats are

equivalent. Assume koD(P). The paths of bid profiles satisfying b1ðtÞ ¼ b2ðtþ 1Þ �
p
k
ob2ðtÞ ¼ b1ðtþ 1Þ ¼ P 8t � 1 maximize the continuation value of the only firm that

has incentives to deviate, i.e. the highbidder (it is optimal to set a5 0), anddrive its one-

shot deviation gains to its minimum level (Lemma 3).

Proof of Proposition 4. To prove Proposition 4, some existence results are needed.

Lemma A1.

(i) There exists d 2 0; 1
2

� �
such that there exists a symmetric path of bid profiles that is

sustainable for all d � d.
(ii) There exists d 2 d; 1½ Þ such that monopoly profits can be sustained through

symmetric bidding if and only if d � d.

Proof of Lemma A1. (i) From the proof of Lemma 3, if koD(0), bi (t)5 0, i5 1, 2,

tZ1, constitutes a one-shotNash equilibrium and thus a Subgame Perfect Equilibrium

of the infinitely repeated game. Similarly, if Pr5D� 1 (2k), bi (t)5D� 1 (2k), i5 1, 2,

tZ1, constitutes a one-shotNash equilibrium and thus a Subgame Perfect Equilibrium

of the infinitely repeated game. Thus, in these two cases, d ¼ 0.

Now, suppose Pr4D� 1(2k). We claim that bi (t)5Pr, i5 1, 2, tZ1, constitutes a

Subgame Perfect Equilibrium of the infinitely repeated game. Firms’ symmetric

incentive compatibility constraint evaluated at (Pr, Pr) can be written as

Prk� 1

2
DðPrÞPr � d

1� d
1

2
DðPrÞPr � p

� �
:

Since, by Lemma 1, p ¼ DðPrÞ � k½ �Pr, the above equation can be written as

Pr k� 1

2
DðPrÞ

� �
� d

1� d
Pr k� 1

2
DðPrÞ

� �
;

and is satisfied if d � 1
2
. Thus d ¼ 1

2
.

(ii) If kZD(0), the incentive compatibility condition evaluated at the symmetric bid

profile (P, P) can be written as

1

2
DðPÞP

� �
� d

1� d
1

2
DðPÞP

� �
;

and is satisfied for all P, and Pm in particular, if and only if d � 1
2. Thus d ¼ 1

2.
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Assume koD(0) and Pm4D� 1 (2k). The (symmetric) incentive compatibility

condition evaluated at the monopoly price takes the following form,

ð21Þ Pm min k;DðPmÞf g � 1

2
DðPmÞPm � d

1� d
1

2
DðPmÞPm � DðPrÞ � k½ �Pr

� �
:

First note that the l.h.s. of (21) is strictly positive, finite, and independent of d; the r.h.s.
of (21) is strictly increasing in d. For d ¼ d ¼ 1

2
, equation (21) can be rewritten as

1

2
DðPmÞPm � 1

2
DðPmÞPm � DðPrÞ � k½ �Pr for k � DðPmÞ

and

DðPrÞ � k½ �Pr � DðPmÞ � k½ �Pm for
1

2
DðPmÞokoDðPmÞ

Both equations are clearly not satisfied. For d-1, the r.h.s. of (21) tends to infinity;

hence (21) is satisfied. By the continuity of the r.h.s. of (21) in d it follows that there

exists d 2 d; 1ð Þ such that monopoly profits are sustainable in every period through

symmetric bidding. Last, assume Pm5D� 1(2k). Clearly, the monopoly price is

sustainable as a (symmetric) one-shot Nash equilibrium (see the proof of Lemma 3).

Hence, d ¼ 0.

With this, we are now able to prove Proposition 4.

For given dA(0,1), let P� be the highest sustainable price under symmetric bidding.

For d 2 d; 1
� �

, P�5Pm (Lemma A1 (ii)); for d 2 0; dð Þ, P�oPr (Lemma A1 (i)); for

d 2 d; d
� �

, P� is the highest price that satisfies

ð22Þ P� min k;DðP�Þf g � 1

2
DðP�ÞP� ¼ d

1� d
1

2
DðP�ÞP� � p

� �
Discriminatory auction: Since symmetric bidding is optimal in the discriminatory

auction for all k (Proposition 3), it follows that P�D(P�) is the highest sustainable per-

period profit level in the discriminatory auction.

Uniform-price auction: First, it is clear that the highest sustainable profit level in the

uniform-price auction is at least equal to P� D(P�) given that firms may choose to

collude on the path of symmetric bid profiles. Second, we proceed by showing that the

highest sustainable profit level in the uniform-price auction is greater than P� D(P�) if

and only if koD(0) and d 2 0; d
� �

.

(If) First, assume koD(0) and d 2 d; d
� �

. From (22) it is easy to show that for

d 2 d; d
� �

, we have D(P�)4k. By Proposition 3, in the uniform-price auction the

optimal collusive scheme yielding joint profits P�D(P�) in every period is asymmetric.

This implies that for a given discount factor d 2 d; d
� �

, the high bidder’s incentive

compatibility constraint evaluated at the optimal collusive scheme yielding joint profits

P�D(P�) in every period would be satisfied with slack. Hence, the collusive profit level

in the uniform-price auction can be raised overP�D(P�) while still making the incentive

compatibility constraints satisfied.

Second, assume koD(0) and d 2 0; dð Þ. Note that this case does not arise for

capacity values such that Pm5D� 1 (2k) given that in this case d ¼ 0. For Pm4D� 1

(2k), d ¼ 1
2
, andP�oPr. Given thatD(Pr)4k, in the uniform-price auction the optimal

collusive scheme yielding joint profits PrD(Pr) in every period is asymmetric
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(Proposition 3). For the same reasoning as above, the collusive profit level can be raised

over PrD(Pr)4P�D(P�) while still making the incentive compatibility constraints

satisfied.

(Only if) Assume kZD(0). For all dA(0,1), given that P�
Z0, then kZD(P�). By

Proposition 3, in the uniform-price auction the optimal collusive scheme yielding joint

profits P�D(P�) in every period is symmetric. Hence, the highest level of sustainable

joint profits in the uniform-price auction also equals P�D(P�), as in the discriminatory

auction.

(Only if) Assume d 2 d; 1
� �

. Hence P�5Pm. Since profits cannot be raised over the

monopoly level, it follows that the highest level of sustainable joint profits in the

uniform-price auction also equals P�D(P�), as in the discriminatory auction.
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